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Sumary

Although successful numerical methods exist for solving problems in shock
and detonation-weve dynamics, there is still a real need of developing new
techniques where the 0ld methods fail to predict important flow properties. For
example, it has recently been shown in Ref. 1 that existing methods fall to
predict the interferometrically measured isopycnics in regular and single Mach
reflections (let alone complex and double-Mach reflections, for which numerical
solutions do not even exist). The purpose of the present report is to present
eight applications of the Random-Choice Method (RCM) to the solution of problems
in shock and detonation-wave dynamics. It is shown that unlike other numerical
methods, the RCM yields sharp-fronted shocks and contact surfaces without re-
sorting to artificial and perhaps erroneous means of predicting their locations,
which depend more on art than science. It is also a very useful method in
showing such fine points as the birth point of the second shock (implosion) wave
at the tail of the rarefaction wave in a spherical explosion.

Despite all these advanteges the RCM has yet to be developed to cope with
problems such as oblique and spherical shock-wave reflections in order to compute
the various isolines (pressure, density and velocity) and compare them with
avallable interferometric or other experimental data. For example, isopycnics
are much more sensitive indicators of the accuracy of a given numerical method
than a comparison of shock shapes (Ref. 1). Undoubtedly, such applications of
the RCM will probably teke place in the near future, as the need for such
numerical methods now exists.
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Notation

speed of sound

contact surface

gpeed of detonation wave

total energy per unit volume

function of V, from Egs. (1'), (2) and (34)
integer attached to the mesh point in space
inhomogeneous term in Eq., (34)

reaction rate

momentum per unit volume

molecular welght

mass flow (fluid enters a wave from the left)
mass flow (fluid enters a wave from the right)
integer attached to the mesh point in time
pressure

sampling point

radial distance

state in Riemann problem; S 2 S r? Sy

time

time increment

temperature

particle velocity

shock velocity

solution of Riemann problem, see Eq. (5)
solution vector from Eq. (2)

particle velocity relative to wave front
space coordinate

gpace increment

%
3
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progress parameter in Eq. (66)

1, 2, 3 for Planar, eylindrical, spherical flows,
specific heat ratio

internal energy per unit masg

random aumber -3 <6< 3

density

respectively
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1. INTRODUCTION

Over the past two decades a number of numerical methods have been developed
for the solution of flow problems in nonstationary gasdynamics involving
transition fronts such as shock waves, rarefaction waves and contact surfaces.
Such fronts occur in shock-tube flows, cylindrical and spherical explosions and
implosions as well as in combustion with deflagration and detonation. In
essence, the set of nonlinear hyperbolic partial differential equations of
motion are replaced by a set of finite-difference equations which are numerically
integrated for a solution. Owing to truncation errors an implicit artificial
viscosity is introduced which spreads the contact-surface and shock-wave fronts
over several mesh lengths. This is analogous to the action of real viscosity and
heat conduction in spreading the shock transition over several mean-free-paths,
eand at the contact surface,due to the diffusion of heat and mass, spreading occurs
with the square root of time.

Most finite-difference methods when applied to problems with discontinuities
such as shock waves produce oscillations behind them. Von Neumann and Richtmyer
(Ref. 5) introduced an artificial viscosity pressure term into the Lagrangian
form of the gasdynamic eguations to get rid of these unwanted oscillations in the
solution. Since then various types of explicit or implicit artificial-viscosity
terms have been used depending on the type of equations, Lagrangian or Eulerian
and the type of finite-difference scheme used. Shock-wave fronts are also smeared
by the artificial viscosity term,as well as the truncation error, typically over
several mesh points. Moreover the artificial-viscosity term contains an
arbitrary parameter which must be determined for each particular problem in order
to obtain the best results. For a recent review of the subject see Ref. k4.

PP

Unfortunately, the spreading or smearing of such fronts makes it difficult to
know their positions with any precision at a given time. The development of the
Random-Choice Method (RCM) by Glimm, Chorin and Sod (Refs. 2, 3 and 6), has
made it possible to overcome these difficulties at the expense of some randomness
in the paths of these wave fronts. For example, shock waves and contact surfaces
are not spread at all and occupy zero zones. Their locations at any time are not
exact but their average positions are. The physical profiles of the head and
tail of rarefaction waves are perfectly sharp, whereas in other methods they come
out rounded. Due to the randomness, the profiles are not smooth but on the
average very close to the exact values for the rarefaction wave. 1In case of a
shock-tube flow, the uniform states separated by the contact surface are obtained
exactly without oscillations. Boundary conditions are readily handled by the
RCM. The time required for the RCM may be two or threefold longer than for the
other methods. However, the number of grid points are fewer for the same resolution.
Consequently, the computation time can be much faster. |

It is known that wave-interaction problems can be analyzed by using the
method of characteristics. The solution, in this case, is computed with the aid
of a grid of characteristic lines, which is constructed in the course of the
computation. This method is used mainly for a detailed description of the flows.
For example, the method of characteristics permits one to determine accurately the
birth point of secondary shock waves in a flow at the point of intersection of the
characteristics of one family. However, if a large number of such shock waves
occur, difficulties would ‘e encountered. Accordingly, the method of characteristics
is usually applied to problams where the number of discontinuities is small.

1




The RCM does not resort to any type of finite-difference scheme to obtain
the solutions for wave-interaction problems. A set of states at two adjacent
mesh points i and (i + 1), at t = 0, form a Riemann problem (shock-tube problem)
with the Euler type of equations of motion, namely, mass, momentum and energy.
From the method of characteristics it is known that a Riemann problem has a
self-similar solution which consists of four uniform states consisting of the
two initial states, two final states, separated by a contact surface and a
nonuniform state, the rarefaction wave. All the thermodynamic and dynamic
properties can be calculated exactly from an algebraic consideration of the
transition relations for shock fronts and rarefaction waves (Ref. 3k4). After
the Riemann problem has been solved, one of the five states is chosen at
random. This choice mskes it possible to find a solution subsequently, at a
time Am/2, at a random point P, which is located between the mesh points i and
(1 +1) as shown in Fig. 1. Although P is located in state (2), this solution
is assigned to mesh point at (i + 1/2). It may appear that this is in error
since the mesh point is really in state (3) in Fig. 1. However, if we realize
that the mesh points are the representatives of elemental regions of the whole
flow field, (i + 1/2) could have been at point P, i.e., the mesh points are
not fixed in physical space. This randommess, on the average, is cancelled out
and the correct solution is obtained. Although this sampling procedure gives
randommess in the wave positions and the shape of the rarefaction waves, it is
in reality acceptable and the calculated values are exact due to the fact that
the method is free from truncation errors and artificial viscosity.

Many wave-interaction problems were investigated theoretically and experi-
mentally at UTIAS. Finite-difference schemes with artificial viscosity were
used mainly for solving the gasdynamic equations in Eulerian or Lagranglian form.
In this report, the RCM is first applied to some of the practical wave-interaction
problems. Although the mathemastical justification of the RCM has already been
shown in Refs. 2 and 3, it is important to check the usefulness and the applica~
bility of the method to practical problems.

So far, the RCM has been applied to planar, cylindrical and spherical
flows (Refs. 3 and 6) as well as to combustion flows (Ref. 7). Some very
important applications of the RCM would be to pseudostationary oblique shock-
wave reflection problems as well as nonstationary cylindrical snd spherical
shock-wave reflections. This has not been fully accomplished to date.

In Chapter 2, the RCM is described for the sake of completeness. Problems
involving different gases with different values of the specific heat ratio ¥
were not calculated previously using the RCM. In this report the program was
modified in order to make it possible to solve problems involving combinations
of gases with different values of y. The procedure is described in Appendix A.
Chapter 3 deals with several examples of simple shock-tube flows solved by
using the RCM. The results are compared with exact or spproximate solutions.
Chapter 4 extends Sod's RCM for cylindrical and spherical symmetric flows.
Chorin's method for calculating reacting gas flows 1s also briefly described.
The methods are applied to some practical examples, which required a modifica-
tion of Chorin's program. Discussions and conclusions can be found in Chapter
5, and the program listings are given in Appendix B.
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2. RANDOM-CHOICE METHOD (RCM)

2.1 GENERAL DESCRIPTION OF RCM

The equations for an inviscid non-heat-conducting one-dimensional flow can
be written in conservation form (Ref. 3):

v, + F(V)x =0 (1)
where
o] m
Vv=|m F(V) = | ao/p +p (2)
e m(e+p)/p

and the subscripts indicate differentiation. The total energy per unit volume
e, may be written as

1 2
e =pe+3 pu (3)

Assuming the gas is polytropic, the internal energy per unit mass is given by

1

o (4)

€=

oo

Letting At and Ax be time and spatial increménts, respectively, the solution
of the system of equations, Eq. (1), is to be evaluated at the mesh points

(isx, nAt), and {(i + 1/2)Ax, (n + 1/2)At}. Letting v? approximate V(isx,

nAt)/a.nd v?:%‘g approximate V{(i + 1/2)Ax, (n + 1/2)At}, it is necessary to find

n+l/2 n

vi+l/2 given Vi Via® 4
Consider an initial value problem for the system of equations given by Eq. j*'

(1), with the discontinuous initial data,

n

Vi x> (1 +1/2)a
V(x, nAt) = (5)
Vis x < (1 +1/2)m

then Eq. (1) together with Eq. (5) is called a Riemann problem. A method for
solving such a Riemann problem will be described in detail in the next section.
Let v(x, t) denote the solution of this Riemann problem and let ¢, be a value
of the random varisble o equidistributed in [- 1/2, 1/2]. Then define v’i‘fi/ 2

by the solution of the Riemanr problem at the point {(i + 1/2 + en)Ax, (n + 1/2)AY)

/A G AU L GRS DS I
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namely, at each time step the solution is first approximated by a piecewise
constant; i.e., Riemann problems are formed with respect to each pair of every
other mesh points. Time is then advanced exactly, and the new values on the mesh
points 1n between those used to construct the Riemann problems are chosen by
sampling (Fig. 1). The justification of this method for solving the system of
equations, Eq. (1), can be found in Refs. 2 and 3.

2.2 SOLUTION OF A RIEMANN PROBLEM

The method of solving a Riemann problem is now described. Consider the system
of equations given by Eq. (1) with the initial data,

8, = (pp» wo ) x>0

V(x, o) = (7
S.Z = (pz: uzs Pz) x <0 ’

The solution at later times will consist of three states; a left state Sg, a
right state Sy, a middle state S, with u =u,, p = P, and p= Py separated from
Sy and Sy by waves, Wr, Wz s whlch may be elther shock waves or rarefact;ion waves.
A contact surface (dx/dt ,(_) separates the gas initially at x < O fram the gas
initially at x > 0. The values of u and p are continuous across the contact
surface while p and other thermodynamic quantities, in general, are not. The
contact surface divides S, into two regions with differing values of densities
pxg and psr, but equal constant values of u, and p, (Fig. 2).

Using Godunov's iterative method modified by Chorin and Sod (Refs. 3 and 6)

P, U, p at the sample point P(eAx, 1/2 At), - 1/2 < 6 < 1/2, are determined as
follows: Define the quantity

M, = (5, - 2 /(3 = W) (8)

If the right wave is a shock wave, using the jump condition across the shock !
wave, we obtain

M, = -p.(u, - U.) =-p, (u, - U) (9)

where U, is the velocity of the right shock wave. From the Rankine-Hugoniot
conditions one obtains

Y b
M= G2 (), 21 (10)
r r .
where / i
_o\L/2 ‘!
¢1(n) =<1-;f—ln+’—-2—l> (11) ;

If the right wave is a rarefaction wave, using the isentropic }aw pp = constant
and the constancy of the right Riemann invariant Iy = 2(p/p)l
£ind

2/(y - 1) - u, ve

|
'

e oot ———

: -- a 1&2'““.]
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p P
Mr=(prpr)% 5 <;§ , p-:<l (12)
where
= 2= 1 l-17q 13
¢2( "l) 275. 1. 17_1% (13)
The function
¢, (n) a1
om ={ (14)
_ ¢2(7|> n<1
is continuous at g =1, with ¢(1) = $1(1) = ¢p(1) = 7% Similarly, we define
Mz = (pz = P*)/(uz = u*) (15)
If the left wave is a shock wave, 3
ME = p‘e(u‘e - UE) = p*‘e(u* - Uz) (16)

where Uy is the velocity of the left shock wave. As on the right,

1 Py
= et o () (17)

where ¢(n) is defined as in Egs. (11), (13) and (14). Eliminating u, from
Egs. (8) and (15), we obtain

up - Ut pr/}/&’ + pz/Mz

P =TI T I/M, (18)

" Equations (18), (17) and (10) or (12) are three equations with three unknowns
Pys> Mp and M. These considerations lead to the following iteration procedure:
Choose a starting value py (or M2, MJ), and then compute M, V'L, M+, p vH
(v > 0) using

B = (uy - w, + /M +p,/M)/(1/M] + 1/M)) (19)
py - = max(e,, B°) (20)
W = (orpr)% ooy /o) (21)
M;ﬂ = (pzpz)% oM l/Pz) (22)




Since there is no guarantee that D remains >0, Eq. (20) is needed. The iteration
is stopped when

max( M - M), P - M) < e

Then put +1 vl
M£=ME ’Ml‘=Mr s Py T Py
Chorin picked the value of € = 10-6, € = 10-6 in this iteration cycle. To
start this iteration cycle either My and My or Px is needed. From the point of
view of computation time, the efficiency of the RCM depends on how fast this
iteration converges. Chorin obtained better results putting

Py = (p, *+7,)/2

as a starting value of the procedure than following the starting scheme
suggested by Godunov (Ref. 8).

Godunov mentioned that the iteration mey fail to converge in the presence
1 of a strong rarefaction wave. This problem can be overcome by the following
3 variant of Godunov's procedure. If the iteration has not converged after J iterat-
: ions, Eq. (20) is replaced by

)t = ¢ max(e,, BY) + (1 - OB}

with { =8 = . In general { will be reset

¢ =1¢ =% -1
after jJ iteration, j =1, 2, 3, ... . Chorin noted that the cases j>2 had never
been encountered and the number of iterations required fluctuated between 2 and
10, except at a very few points.

Knowing My, M , p,, Eqs. (8) and (15) give
u, = (pz - P tMu, + Mrur)/(Mz + M) (23)

2.3 SAMPLING PROCEDURE

Having a solution in the middle state S*, the next step is to determine the
solution at each mesh point by sampling. There are four basic cases to be sampled.

1) The sempling point P = (eAx, 1 At)  1ies to the right
of the contact surface whose inverse slope in the (x, t)-
plane is (dx/dt) = ux, and the right wave is a shock wave,
i.e.,

asx > u At/2 and Py > P,

As mentioned before 6 is a random number uniformly
distributed over the range of [-%, %].

The sampling point P lies to the left of the contact
surface and the left wave is a rarefaction wave, i.e.,

6
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8mx < w,At/2 and p, < P,

3) The sampling point P lies to the left of the contact
surface and the left wave is a shock wave, i.e.,

oM < u Ab/2 and p, > p P

L) The sampling point P lies to the right of the contact
surface and the right wave is a rarefaction wave, i.e.,

/% > u,At/2 and p, < P,

In what follow 5, ﬁ, D denote the sampled solution, and now how they are
determined is explained for each case.

Case 1) From Eq. (9), the velocity of the right shock wave Uy can be obtained as

U, =u, + Mr/pr (2u)

If the sampling point P lies to the right of the shock-wave line dx/dt = Ur,
region 1 in Fig. 3,

D=Or:u=ur’

If the sampling point P lies to the left of the shock wave, region 2 in Fig. 3,
P = ogps WUy, P =y
where o . is obtained from Eq. (9) as
Oy = M/ (uy - U) (25)
Case 2) The rarefaction wave is bounded on the left by the line dx%/dt = ug-ag,

and on the right by dx/dt = Ux - ayx, where 8f and 2% are the sound velocities
in the states Sy and Sk, respectively; ay is given as

a‘z = 'V7zpz; pz (26)
and a, can be found by using the Riemann invariant [y = constant,
2 - + = - + =
a*/(yz 1) +u, 2az/(7z 1) u, =T,
If the sampling point P lies to the left of the head of the rarefaction wave,
dx/dat = uy - ay, region 5 in Fig. 3,
B':pz’\-l:uz’igpz

If the sampling point P lies to the right of the tail of the rarefaction wave,
dx/dt = ux - ax, region 3 in Fig. 3, set

B=Q*z’ﬁ=u*,5=P*

e e amea aeais




where Prg is calculated using the isentropic relation pp-7 = A (conétant), as
ug = (2/07 (21)
The value of A can be calculated in the state Sg as
A=pe MY (28)

If the sampling point P lies insid:e the rarefaction wave, region 4 in Fig. 3, the
y slope of the characteristic dx/dt = u - a is equated to the slope of the line
1 connecting the origin and P, to obtain .

U - a = 20/%/Ab (29)

Also, ‘ i
26/(y - 1)+ =2a,/(7, - 1) +u, = T, (30) |
Solving Eqs. (29) and (30), obtain | '

- 2 2 0AX 7g=1 i
u‘—_7z+l<At Tayt=73 “t> (31) ]

Since a = (7113/5)1/2 and p = A}Sn

(32a)
(32p)

Cases 3 and 4 are mirror images of cases (1) and (2) and the same arguments
are applied.

2.4 PRODUCTION OF RANDOM NUMBERS

The choice of a series of random numbers o, (n =1, 2, ...) determines the
behaviour of the solution. If 8 is close to -1/2, the values in the left state
Sy propagate to the right to {(i + 1/2)Ax, (n + 1/2)At}, while, if @ is close to
1/2, the values in the right state Sy propasgate to the left. Therefore it is
important to choose g, in such a way that they tend to be equally distributed
over [-1/2, 1/2] as soon as possible.

Chorin noted that it is unreasonable to choose a new value of 6 for each
mesh point 1, at each time level n, since there is a finite probability that a
given state S will propagate in both directions. Chorin overcame this problem
choosing a new value of § once for each time level rather than assigning a new
value of g for each i and n. Chorin further improved the method by making the
sequence of random numbers 6n, reach equidistribution over [-1/2, 1/2] at a
faster rate. This is done by combining & random number 6, chosen from the range
of [-1/2, 1/2] and a pseudorandom number ky.

Let m and mp be two mutually prime integers (mj < mp) then consider the
sequence of integers,

8




k 4y = (my +k)(md m)

where k, is given, ko < mp. This will produce a series of pseudorandom numbers.
For example, if kg = 11‘ = 3, mo = 7, then ky, kp, k3, ... will be a repetition
of a series of integers, o, 3, 6, 2, 5, 1. If we consider the following
sequence:

k + (s +1/2) ’
9' = 2 .t -% (n=l, 2, o.')

; =

on Will be also in the range of [-1/2, 1/2]. This modified sequence of random
nunbers op is employed in the program. The advantages of using this sequence en
is described in detail in Ref. 3.

2.5 BOUNDARY CONDITIONS

Consider a solid-wall boundary at x = b, with the fluid to the left. The
boundary conditions are imposed on the grid point closest to x = b, say igohx.
A pseudo right state Sr at (i, + 1/2)Ax is created by setting

fia/e T P -1/2
ui°+l/2 = uio-l/2 (33)

4 =D, _
1,41/2 ~ Fi-1/2

In this manner, waves can be reflected at a solid boundary.

2.6 TREATMENT OF CONTACT SURFACES

The Random-Choice Method was not applied to flow problems having combina-
tions of gases with different specific heat ratios. In this report the program
was modified to handle such problems, thereby enlarging the applicability of the
RCM. The position of contact surfaces are determined durlng sampling procedure
and consistent with the RCM. The details are given in Appendix A.

3. NUMERICAL RESULTS FOR PLANAR WAVE INTERACTIONS

The purpose of this section i1s to show how well the RCM works for nonsta-
tionary wave-interaction problems by using several illustrative examples. Many
examples of interactions of shock waves, rarefaction waves, contact surfaces and
with solid boundaries are given in Refs. 9 and 10.

In order to illustrate the usefulness of the RCM, the following examples
were calculated:

1. Reflection of shock wave from end wall of a shock tube and subsequent
interactions.




2. Head-on collision of a shock wave with a rarefaction wave.
3. Head-on collision of two rarefaction waves.

L. Contact-surface tailoring.

5. Shock-refraction problem at a stationary contact layer.

6. Shock-wave propagation in a varying-density field.

3.1 REFLECTION OF SHOCK WAVE FROM END WALL OF A SHOCK TUBE AND SUBSEQUENT
INTERACTIONS.

The initial conditions were set in such a way that we could compare the
results obtained using the RCM with those obtained by Gurke and Schwarzkopf
(Ref. 11), i.e.,

diaphragm pressure ratio : Py; = 27.0
test gas - air Py = 1.k
driver gas - air : o7y = 1l.bo

Figure 4 was drawn from the data in Ref. 11. Since these results were obtained
with the method of characteristics and there is no interactions between shock
waves and rarefaction waves, the solutions obtained here are exact. Figure 5
shows our results cbtained with the RCM for a mesh number of 720 along the axis
of the shock tube. Only the region close to the end wall is displayed. Since
this method does not make use of an artificial viscosity, shock waves and contact
surfaces remain perfectly sharp. Owing to this outstanding feature, we can
recognize as many as 68 different regions without difficulty in this particular
case. The exact wave trajectories in Fig. 4 are superimposed in Fig. 5 as solid
lines for ready comparison with the present results. It can be seen that the
agreement in wave positions is excellent. At t ~ 2.5 ms, the error in the
pPosition of the contact surface is about 6 mesh sizes, and appears to be the
largest error in the region where the exact solution is presented for comparison.
This error corresponds to about 0.8% of the whole mesh number, i.e., 1.3 cm for a
180-cm long shock tube. The discrepancy of the wave positions from the exact
solution depends on the mesh size and was about 3% when the mesh number was

180. 1In Table 1, values of pressure P, density p, and particle velocity u, obtained
by the present method asre compared with the exact solution for each region. In
these ﬁegions, the numerical errors in both pressure and density are of the order
of 10=". Although they tend to increase as time goes on, their magnitudes are
small enough to consider the numerical values as exact. In Table 2 numerically
obtained values of P, p, U are listed for all the regions which appear on Fig. 5.
In Fig. 5 and Table 2 we see that the flow patterns get more and more complex and
also, as one can expect, the changes in values of p, U, P become smaller. For
example, in regions 67 and 68, across them the changes in pressure and density
are from 24,690 to 24.69L4, and from 8.719 to 8.721, respectively.

All the numerical computations were done using an IMB 370. It took 77.78
min to calculate this example with 720 mesh numbers and 1600 time steps. This
fairly long computation time includes the time spent to calculate the solutions
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at mesh points far fram the end wall in which, however, there is no immediate
interest. Therefore, if we could simulate wave interactions only in the region
clogse to the end wall, significant camputation time could be saved.

This can be done as follows. First, calculate the values of p, u, p in
the regions 2 and 3 for the given initial conditions by using either Rankine-
Hugoniot relations or this numerical method. Then distribute states 1, 2 and 3
as the initial conditions over the mesh points and by removing the boundary
conditions at the other end wall of the shock tube so that no reflected rarefac-
tion wave is generated there., This corresponds to a shock tube with an infinitely
long high-pressure section. In the same way, one can always simulate only those
wave interactions that one is interested in, that is, a larger dynamic range for
the wave interactions for the same mesh number. It took 3.19 minutes to calculate
the same problem with a mesh number of 180 and 300 time steps, or from t = 0 to
t = 3.6 ms in this particular case. Many wave interaction patterns are seen in
Fig. 5, such as the overtaking of two similarly facing shock waves, the head-on
collisions among shock and rarefaction waves, the interaction of a shock or rare-
faction wave with a contact surface. Some of these basic interaction problems
were simulated in detail and will be discussed subsequently.

3.2 HEAD-ON COLLISION OF A SHOCK WAVE WITH A RAREFACTION WAVE

This interaction problem was investigated by Gould (Ref. 12) both analytically
and experimentally. The initial conditions provided for a shock strength p;p, and
rarefaction strength ppp of pjg = 1.96 and pyp = 0.549. This is achieved by
putting the left diaphragm pressure ratio ppo = 4,15 and the right diaphragm
pressure ratio pog = 3.26 with y = 1.k0. 1

e

Figure 6 shows the resulting wave system for this case. As a result of the
head-on collision of a forward facing shock wave (fluid particles enter the wave
from the right) and a backward facing rarefaction wave (fluid particles enter the
wave from the left), there appears a forward facing transmitted shock wave and a
backward facing rarefaction wave. Since the shock wave increases in strength con-
tinuously during the interaction with the rarefaction wave, each fluid particle
crogssing the shock wave in this period of time will experience a different
entropy Jump thereby forming a contact layer or region. Consequently, the region
between the transmitted shock wave and the transmitted rarefaction wave consists
of two new uniform regions (3), (4) and a contact region. (Note that secondary
interactions of characteristics within the contact layer have been neglected.)
Pressure p, and particle velocity u, are the same for regions (3) and (4), but
density p, temperature T, and entropy S, are different. The exact values of p,
u, p in the regions (3) and (4) can be determined analytically. The wave trajec-
tories, however, in the interaction region were determined by Gould in detail,
as outlined in Ref. 12. 1In Fig. 6, the wave trajectories were obtained only by
averaging the initial and final stage of the interaction without the detailed
method of Gould. The results (circled data) obtained by the RCM are superimposed
on those obtained by Gould in Fig. 6. In Table 3, the camputed values of p, U, p
are compared with those obtained by Gould. As we can see, the calculated values
are correct to at least the first four digits and the error is of the order of
10-%. The agreement in the wave trajectories is also very good and the error is
about 1% at the most.

W

The computation was carried out with 180 spatial mesh points and it took
0.72 minutes to proceed through 82 time steps, which was long enough to simulate
the interaction process appearing in Fig. 6.

11
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In Table 3, as mentioned before, the pressure p and particle velocity u are the
same for regions (3) and (4) but the density p is different. The density change across
the contact region is as small as 0.19% of its absolute value.

3.3 HEAD-ON COLLISION OF TWO RAREFACTION WAVES.

This problem was solved by Steketee (Ref. 13). The computer simulation was done
by assuming an experiment using a two-diaphragm shock tube. Initially the center
Part, which is separated by two diaphragms both from the left part and right part of
the shock tube, is filled with a gas at higher pressure than the other two sections
80 that, after the two diaphragms are ruptured, rarefaction waves propagate into this
center section and collide. The assumed initial conditions for the numerical calculat-
ions were :

left section: Ar (y = 1.6667): p = 0.088118, p = 1.7457
centre section: Mz (y = 1.L4000): p = 1.0000, p = 1.0000
right section: Ar (y = 1.6667): p = 0.024793, p = 0.49119

This will give the forward-facing rarefaction wave strength Ppg, of 0.59498 and
the backward-facing rarefaction wave strength Pjos of 0.39945.

After the interaction, a uniform state appears between the two transmitted rare-
faction waves. Unlike the previous case the interaction process is isentropic
and no contact region will be produced. The values of p, u, p in this wniform
region can be determined exactly. The exact values and the results obtained from the
RCM are displayed in Table 4. Again the errors in this calculated values are very
small. TFigure 7 is the (x, t)-diagram for this interaction. The circles are the
results obtained using the RCM and lines are those obtained by the method of
characteristics (Ref. 13). The agreement is, in general, good especially before
the interaction. The agreement of boundaries between the state (3) and transmitted
rarefaction waves do not look too good. This relatively large error, typically about
3%, includes the error associated with the method of characteristics and we can
expect smaller errors for the RCM itself. On the region of penetration, the
characteristic lines are no longer straight, and their traj)ectories had to be
determined graphically dividing the rarefaction waves into small segments. In
Fig. 7, trajectories of characteristic lines were obtained by dividing both rare-
faction waves into four segments. As far as the wave trajlectories are concerned,
since it is not practical to divide the rarefaction fans into too many segments,
the method of characteristics is also approximate in this problem.

It took 1.72 min to compute 180 time steps with 180 spatial mesh numbers.

3.4  CONTACT-SURFAGE TAILORING

In general, when a shock wave reflects at the channel end wall and collides with
the oncoming contact surface, the shock wave is transmitted and either a shock wave

or a rarefaction wave is reflected. However, by choosing the initial conditions properly,

they provide a contact surface such that the reflected wave is a Mach wave. As a
result, the gas from the end wall to the contact surface remains in a uniform or
tailored state. Figure 8 shows such a condition where the wave between states (5)
and (7) is a Mach wave. Since state (5) is stationary (us5 = 0), states (7) and

(8) are algo stationary (uy = ug = 0) and the contact surface is brought to a
complete stop. When the row is taillored, one can get a relatively long test time
in the stationary region, which is very useful for aerodynamic and chemical-kinetic
studies.

12
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Tailoring in this case was produced by using two different gases with
different specific heat ratios. This problem requires a high degree of accuracy for
a solution and becomes very difficult for those methods with a finite difference
scheme in which contact surfaces cannot be well defined. Given the initial test
gas conditions, the diaphragm pressure ratio p), and the composition of the driver
gas can be determined by assuming the incident shock strength p,, (Ref. 14). Using
argon as a test gas (71 = 1.667, M = 39.94), the diaphragm pressure ratio Py
and the molecular weight of the driver gas (assuming a diatomic gas with 94 = I1.L0O)
Mh’ were calculated for py; = 12.30. The calculated results give values for
Py = 58.21 and My, = 7.251 (ol = 10.57). This driver gas can be made by mixing
T9.87% of hydrogen and 20.13% of nitrogen, for example. The calculated values
and the results obtained by the RCM are compared in Table 5 and in Fig. 8.
It is seen the calculated values of p, u, p in each region are very accurate. The wave
trajectaries are in good agreement until the moment when the incident shock wave
reflects from the end wall, where it leaves with slight delay, causing a spatial
error of about 2%. Although it fluctuates back and forth one mesh size due to the
randomness of the sampling procedure, the contact surface stopped after its inter-
action with the reflected shock wave, as expected.

It took 2.38 min to simulate 250 time steps with 180 mesh numbers.

3.5 SHOCK REFRACTION PROBLEM AT A STATIONARY CONTACT LAYER.

The interaction of a shock wave and a stationary contact surface was
investigated analytically by Bitondo, Glass and Patterson (Ref. 15) and experimentally
by Ford and Glass (Ref. 16). After normal reflection of & shock wave at a stationary
contact surface, there are two possible cases; a transmitted shock wave, contact
surface and reflected rarefaction wave, or a transmitted shock wave, contact surface
and reflected shock wave, depending on the incident shock strength and the initial
internal energy ratio (acoustic impedance) across the contact surface. Putting a
helium layer in air (Air llHe llAir), both cases occur at the two contact surfaces.

In the simulation, the incident shock strength was 3.700. In this case, at the

left contact surface Cy (Air lHe) a reflected rarefaction wave appears and at the
right contact surface Cr (He || Air) a reflected shock wave results. The solution

for p, u, p can be determined exactly and they are compared with the computed results
in Table 6. The interactions are shown in Fig. 9 with the results computed by RCM.
In this particular case, the shock strength was attenuated after passing through

the helium layer, from a pressure ratio of 3.700 to 2.971. For further details

see Ref. 16, where it is shown that other interactions soon amplify the shock wave
to nearly its original strength. The order or errors both in the calculated values
in the flow variables and in the wave positions are the same as the previous examples.
It took 0.70 min to calculate 140 time steps of this problem with 180 mesh numbers.

3.6 SHOCK-WAVE PROPAGATION IN A VARYING-DENSITY FIELD.

When a shock wave propagates in a gas which is stationary but has a certain
density distribution in the direction of the wave propagation, the shock wave changes
its propagation speed and strength. For example, by cooling a vertical-channel end-
wall the test gas remains at constant pressure but has a nonuniform density.

Simulation was done with the following initial conditons. The driver gas was
air (y4 = 1.400) and test gas was helium (y; = 1.667). The density distribution is
uniform in the driver section. In the test section, it increases linearly such that p
at the end wall is fourfold py at the diaphragm position. This density change
can be obtained by cooling the test gas from 298° K at the diaphragm to Th.5° K
at the end wall. The initial diaphregm pressure ratio was teken as pPy; = 30.

13




|
|

The results are displayed in Fig. 10. In this particular case, the shock strength
increases fram poy = 2.24k, at the moment when the diaphragm was ruptured, to P21 =
3.17, when the shock wave has propagated to the end wall of the shock tube. Corre-
spondingly, the local shock Mach number is also increased. However, since the local
speed of sound is reduced due to the density increase (temperature decrease);

a « m, the propagation speed of the shock wave is reduced. The particle veloci-
ties are also decreased. The wave diagram is shown in Fig. 11, where the exact
solution for the case when the density p is initially uniform, is superimposed for
comparison. As expected, the shock wave and contact surface decelerate, It took
0.503 min to calculate 200 time steps with 100 mesh numbers. It is worthwhile
mentioning that this example is difficult to handle using other numerical methods.
Technically, the difficulty arises from trying to keep the region ahead of the shock
wave stationary until its arrival in a finite difference scheme. The method of
characteristics also has difficulties to treat this problem since all the character-
istics inside the nonuniform region are not straight.

L. EXTENSIONS OF RANDOM CHOICE METHOD

4.1 ONE-DIMENSIONAL SYMMETRIC FLOW

4.1.1 GENERAL DESCRIPTION

Sod developed a method of calculating one-dimensional symmetric flows such as
cylindrical and spherical shock waves by combining the RCM with operator splitting.
He gives some numerical results on converging shock wave problems in Ref. 6. Here,
Sod's method will be applied to a spherical-explosion problem and the results will
be compared with some results obtained by Brode (Ref. 26) using the artificial-
viscosity method. The equations for an inviscid, non-heat-conducting, radially-
symmetric flow can be written in vector form (Ref. 6):

Vi * (V) = -I(V) (34)
where
p m m/r
ve|m F(v) = | n°/p + p I(V) = (@-1) [ =/
e n(e+p)/p m(e+p)/pr

where @ = 2, for cylindrical symmetry, o = 3, for spherical symmetry and @ = 1,
corresponds to planar cases described in Chapter 2.

Exact solutions exist for point-source explosions in the limiting case when
the primary shock wave is infinitely strong (or implosions) where the pressure
in front of the shock wave is negligible, by comparison to that behind it, or in
the acoustic limit, when the shock is very weak (i.e., entropy changes are negli-
gible) (Refs. 17 to 25). Although such solutions are useful whenever they are
applicable, they cannot be applied to real problems of finite sources when the
shock waves are neither strong na weak. These solutions do not predict the
important features of the flow that exists in an actual case such as the second
shock wave and wave interactions in the vicinity of the contact surface. To
obtain these features, Eq. (34) must be solved. In general, there are two major
difficulties in solving Eq. (34):

1) A singularity exists at r = 0. {
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2) The momentum equation [the second component of Eq. (34)] cannot be expressed
in conservation form.

Consequently, Eq. (34) has to be solved numerically. Brode (Refs. 26 - 28) was
able to numerically integrate the nonlinear (inhomogeneous) partial differential
equations, Eq. (34), for a number of important flow problems involving spherical
explosions. Payne (Ref. 29) solved the case of a cylindrical implosion by using a
similar method. Lapidus (Ref. 30) computed a cylindrical-implosion problem in Cartesian
co-ordinate in two space dimensions. Although these methods have been used
successfully to explain physical phenomena, they have inherent disadvantages in
that the use of artificial viscosity smears out the wave fronts over several mesh
numbers and to find their exact location becomes more of an art than a science.*
By using Sod's method such difficulties including 1) and 2) are eliminated-
completely.

4.1.2 SOD'S METHOD.

T In Sod's method, the first step is to remove the inhomogeneous term -I(V)
1 from Eq. (3L4), using the method known as operator splitting. Thus the system

is solved. 1In this system, the momentum equation can be expressed in conservation
form and the RCM, described in Chapter 2, can be used to obtain solutions. Once
the system of equations, Eq. (35), has been solved, the system of ordinary
differential equations given by

[ v, +F(V), =0 (35)

v, = -I(V) (36)
is solved in turn.

In the program, Eq. (36) is solved using a Cauchy-Euler scheme by utilizing
the solutions of Eq. (35), ¥, to determine the inhomogeneous term -I in Eq. (36),
namely, the system Eq. (36) is approximated by

3 - v/ = (P

or (37)
AR AR (i

Since the solutions for the system Eq. (35) are only obtained at intermediate
points and the scheme of Eq. (37) does not require values atr = 0, the singularity
at the axis is eliminated. The boundary conditions are properly imposed on Eq.
(35), as described in Sec. 2 - 5. There is no need to put boundary conditions on
Eq. (36), since it is solved only at intermediate points.

4.1.3 EXPLOSION OF A PRESSURIZED HELIUM SPHERE.

A set of experimental results for the explosion of pressurized glass spheres

*The reader will find a fuller discussion in Ref. 38.
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filled with air or helium into air may be found in Refs. 26, 31 and 32. As an
example of Sod's method, one of the experimental conditions for a helium explosion
was used as initial conditions for the numerical analysis,

diaphragm pressure ratio: Py = 18.25
diaphregm density ratio: P41 = 2.523 (38)
initial particle velocities: wu; =y, =0

At the instant of rupture, the planar-wave conditions apply, giving a shoek
strength p,, = 6.497. The shock wave then decelerates until it becomes & sound
wave. The Tontact surface decelerates and its motion becomes oscillatory. The
rarefaction-wave head moves at constant speed and reflects at the origin where its
motion becomes complex. The tail of the rarefaction wave accelerates and an
implosion (second shock) wave originates on it.

Equation (3l4) may be reexpressed in the following form by using the method of
characteristics (Ref. 25).

Along a right running characteristics or P-wave,

F-u+a (39)
&P a_ 85 au _
-.6-t’_+ + C_p -‘E— + (OC - l) r_ =0 ()40)

and along a left running characteristic or Q-wave,

F=u-a (41)
%%+§_g‘%.+(a-1)i:=o (42)
- p -

In the present explcsion case, a Q-rarefaction wave results. The values of Q

in the plane case for state (i) and (3) are 2ay/(94 - 1) and 2a3/(y4 - 1) - u3,
respectively. In the limit for a complete rarefaction wave when a3 ~+0,

u —»Zah/syu - lg and 0 —-2aL/(7 - 1). Consequently, Q decreases from the head
[Q= Zau/ 74 - 1)]  to the tail of the rarefaction wave. Since the Q-rarefaction
vave is isentropic, Eq. (42) gives 5Q/8t. = -(@ - 1l)au/r,that is, as one proceeds
along & Q characteristic Q decrease. This can only happen if the characteristic
accelerates in the direction of the tail of the rarefaction wave. In other words,
as time goes on, the Q-rarefaction wave continuesto get stronger until it is
engulfed by the second shock wave.
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The pressure profiles obtained by Sod's method are displayed in Fig. 12.

The numerical results are drawn from the output of the computer without smoothing

! (except in Fig. 15, the explosion-wave diagram). The results exhibit the general

characteristics of a Q-rarefaction wave for an explosion problem very well.

Initially the planar rarefaction strength p... ¢ 0.356. As time goes on. the

E absolute values of pressures at the tail of“the rarefaction wave continue to
decrease until the second shock wave is generated around the time number 10
which corresponds to 26.5 us after the glass spL:re ruptures. Af time number 10,
the rarefaction strength is inereased to 0.142. The density profiles are shown in Fig.
13. They are quite similar to the pressure profiles except for the discontinuity
across the contact surface. Agein, the lowered density ratios or increased
rarefaction~wave strengths are observed. The formation of s second shock wave
and the deceleration of the primary shock wave can be explained by considering the
path of the contact surface as similar to that of a piston. The contact surface
is decelerated as a result of the spherical nature of the flow and sends out ahead of
itself rarefaction pulses (P-characteristics) that overtake and decsy the primary
shock wave., However, behind it, compression pulses (Q-characteristics) are sent
out which overtake to form a second shock (implosion) wave along the tail of the
rarefaction wave. (It is worth noting that in the planar case such pulses run
parallel to the tail of the wave, but in cylindrical and spherical flows, they
collide with the tail of the rarefaction wave.) This explains why the path of second
shock is connected with the tail of the rarefaction wave. Although the second
shock wave is a backward facing wave, it is initially very week and propagates
outward at first owing to the high positive particle velocity. However, as it
gains strength, it overcomes this counter flow and finally implodes on the origin
with unlimited strength ideally. 1In Figs. 12-a and 13, we cen see that the strength
of the primery shock wave decays as it proceeds and how the second shock wave is
generated. In the foregoing figures at sbout 26.5 Mg after rupture (time number
10), noticeable discontinuities were found that grew into a second shock wave,
and were defined as the birth point of the second shock wave. The particle-

. § velocity profiles are shown in Fig, 1l4. In the early stage of the explosion, all

particles move outward (positive velocity). As the contact surface decelerates,

compression waves (Q-characteristics) and rarefaction waves (P-characteristics)

decelerate the particle velocity creating a large negative velocity range. In

this particular case, it reaches almost -0.8a; (at time number 46, 120 ps after

rupture). This negative particle velocity is reversed by the reflected second

shock up to small positive values (time number 56). In Figs. 12, 13 and 1k, the

profiles of p, p and u have complex structures around the origin. This is

mainly due to the randomness of the RCM in the rarefaction wave. Unlike similarly-

facing shock waves in the planar case, the second shock wave does not overtake

the primary shock wave because of the lower sound speed and the lower or even

oppoging particle velocity behind the primary shock wave. Therefore, the primary

shock wave and the reflected second shock wave slow down continuously to become

Mach waves. (It is worth noting that this is the principle behind travelling wave

sonic-boom simulators; Ref. 33.)
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The wave diagram is shown in Fig. 15. Isobars, isopycnics and isotachs

(constant velocity lines) are shown in Figs. 16, 17 and 18, respectively. In the
figures, the decreases in pressure and density behind the incident and reflected
rarefaction waves are quite apparent. The pressures and densities in front of the
imploding shock wave near the origin are very emell. This imploding shock wave

also induces large negative velocities as it approaches the origin and a line of zero
particle velocity is seen. It is also apparent that the second shock wave is
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produced along the tail of the rarefaction wave, propagates outward at first, then
starts to implode and increases in strength to unlimited values as it hits the origin
and reflects. The origin becomes a singularity and the continuum equations break-
down., Transport properties would keep the thermodynamic properties finite at the
implosion focus.

4.2  REACTING-GAS FLOW

h,2.1 GENERAL DESCRIPTION

The RCM was applied to reacting gas flow by Chorin (Ref. 7) and was shown to be
capable of handling time-dependent detonation and deflagration waves with finite
and infinite reaction rate. Chorin emphasized an important advantage of using
his method since the imterasction of the flow and the chemical reaction can, be
taken into account wheén the Riemann problem is solved, even when the time scales of
the chemistry and the fluid flow ere very different. As a result, the basic ;
congservation laws are satisfied at the end of each time step. If the chemical .
reactions and the gas flow were to be taken into account in separate fractional
steps, the basic conservation laws may be violated at the end of each hydrodynamic ;|
step, thus either inducing unwanted oscillations and waves, or requiring time steps
small enough for all changes to be very gradual, usually a costly remedy. Chorin's
main object seemed to be placed on developing the technique and to show the usefullness
of the method. Thus, in his program, there is an unreasonable assumption, Yo = 7L =7
i.e., the specific heat ratios do not change across the reaction front. Although, as
he states in his paper, the case 7,4 # 71 is more difficult only because of additional
algebra. We felt that this assumption must be improved. Here, as a first step, the
program was modified to have changes in the specific heat ratic so that «, f n
at the detonation-wave front. The RCM was then applied to a detonation wave in a
2Hy + 02 gas mixture.

4,2.2 CHAPMAN-JOUQUET DETONATION

A Chapman-Jouguet detonation is described briefly in this section for the
convenience of expleining Chorin's method of calculating reacting-gas flow. The ¢
equations to be solved are (Ref. 7 and 34) ~

py + (pu), =0 (43)
(pu), + (pu° + ), =0 (k)
e, + [(e +p)u], =0 (45) \
vhere ‘
e =pe+yp i (46)
€e=¢ *+q (47)

€ is the internal energy per unit mass end expressed as,
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q is the energy of formation which can be released through chemical reaction, In
this present section, it is assumed that part of 4 is released instantaneously
in an infinitely thin reaction zone. Denoting the unburned and the burned gas with
O and 1, respectively, we have

(48) 1

ol

F € = ——-Il f-o +q (49)
. O 7"+ P °

§ P

} € = 711_ T -é +q (50)

Assuping that the unburned gas is on the .ight, end letting D be the velocity of
the reacting zone, Eqs. (43) and (LlL) can be written in conservation form

P¥y T Po¥y = -M (51)
2 2 '
Pe TP, TP tH (52) 5
where !
)
w,=u ~-D, w =u -D (53) :

From these relations one readily deduces
M = -(p, - p)/(r, - ) (54)

where T is the specific volume, 1/p.

Conservation of energy is expressed by
1
& - € -3 (1, - 1), +p) =0 (55)

Substituting Eqs. (49)and (50) into Eq. (55), we have

71 +1 7 + 1
<Po+;:_-—Ipl>Tl'<p1+70_'.'.—Ipo>To+2A=o
(56)

where A< 41 - Qo-In the ( 71, p;)- plane the lines through (7o, Po) tangent to
the curve expressed by Eq. (56) sre called the Reyleigh lines (Fig. 19). Their
points of tangency, S; and Sy are called the Chapman-Jouguet (¢J) points. The
upper portion of the Zurve corresponds to detonations; the portion above S)
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to strong detonations and the portion below to weak detonations. The lower part

of the curve corresponds to deflagrations. A portion of the curve is omitted as it

corresponds to physically unacceptable conditions where M < 0. The velocity and
strength of a strong detonation are entirely determined by the state of the
unburned gas in front of the detonation and one quantity behind the detonation
Just as for shock waves. Let po, po and ug be given, as well as p;, and assume
the unburned gas lies to the right of the detonation, then from Eq. (56)

Hy 2 2 2 2
=T, (—g P, * By Py >/ (b,7po +2y) - 24 (w2, +3,)  (57)
uO
where
2 n=1 _
By 7 g i=0,1 (58)
and
" 2
2 2
f = po(Po - Pl) (ulepo + pl)/ {('_1'2 - ﬂl >p0 + (ul - l)Pl - zulapoA}
u'O

(59)

The states on the curve located between the CJ point Sy and the line v =17

correspond to weak detonations. In this region, a CJ-detonation is followed by
a rarefaction wave.

In what follows an explicit criterion for determining whether a detonation
will be a strong detonation or a CJ~detonation is described. 6 It is shown in Ref.
34 that at Sy, the velocity |w)] = aj where a; = (n pl/kl)l/e is the sound speed,
i.e., a CJ-detonation moves with respect to the burned gas with a velocity equal
to the velocity of sound in the burned gas. This fact is used to determine the

density fgg, velocity upy, and pressure Pog behind a CJ-detonation. From Egs.
(51) and (54)

7P
(o = P/ (ry = 7)) = - 20," = =p,° —,1)1—1- (60)
Therefore we get
n = NP/ ((n *1)py +3,) (61)

From Eqs. (56) and (61) we have,

P12+2bpl+c=0 (62)
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where
]
71 -1
bes il lp (- ey (63)
o
" 2
2 .
¢ =—12 Py - 2"*1 popcaA (64) 5
3 Ho |
i
E . Therefore J
3 !
=p, = b+ (2 - )2 (65) "“
Poy = Py !

Given pog, Pogy = PL = T1 T can be obtained from Eq. (61). Since M = -pjwy
and w; = -aj, we find

! M= (g2 o)™2 = (ypgye0p ™2

The velocity of the CJ-detonation wave Doy is found from
Poldy = Dop) = -M
= 1/2
which yields Doy = {pu, * (,lchpr) }/po and then

Yo = Dog = Bag

Suppose uj, the velocity of the burned gas, is given. If uy < ugy a CJ-
detonation appears, followed by a rarefaction wave. If uy = ugy a CJ-detona~
tion appears alone, and if uj > ugoy a strong detonation takes place.

An outline of Chorin's method for calculating reacting-gas flows is
described in the next section.

4.2.3 CHORIN'S METHOD FOR REACTING-GAS FLOWS

In this section, Eq. (47) is replaced by

1
e=o=>gE+z (66)

where Z 1s a progress parameter for the reaction, and q is the total available
binding energy (q < 0). 2 is assumed to satisfy the rate equation,

az/at = -Kz (67)
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where

~
]
o
[y
H
L]
1]
IA
=3

(68)
K=K if

ol ok

L]

u
A
3

To is the ignition temperature and K, is the reaction rate. Chorin has solved
Eqs. (43), (44), (45), (46), (66), (67) and (68) using the RCM and has shown that
a Riemann type problem can be solved even when deflagrations and detonaticns are
included along with shock and rarefaction waves. In the present case, the initial
data for a Riemann problem has the form of

Sz(p = Pgs P =Dy U= Uy, Z =Z£) forxso.
and (69)

Sr(p=pr’P p,u=ur,Z=Zr) forx>0'

r

When there is no chemistry (K, = 0), Z = constant and Eq. (69) reduces to Eq.

(7) and its solution is given in Chapter 2. 1In case K, # O, right and left waves
may now be CJ or strong-detonation waves as well as shock and rarefaction waves.
Chorin has incorporated these possibilities into the solution of the Riemann
problem and developed a camputer program to calculabe this problem.

The state Sy remains a constant state; u, and pr are fixed. The energy in Sy
must change at constant volume (and thus can do no work). The change 8, in Z,
can be found by integrating Eqs. (67) and (68), with Z(0) = Z, and Z(Ai.‘«/r
Zyr + 82y, B2y < O. The new pressure is written as

new

D

r =P.tOp =p +(y-1)Zaqop, (70)

In what follows, the superscript new, is dropped. Similarly, Zj changes to
Zg + B2, and a new Py is found using the analog of Eq. (70).

In Sy the values of Z differ from the values Zy + @y, Zg + 82g. Let Zx
be the value of Z to the left of the slip line (dx/dt = uy) and let'Zx, be the
value of Z to the right of the slip line. The difference in energy of formation
across the right wave is Ar = {Zx, - (Zr + &r) Ja, and across the left wave it
is Ap = (Zxyp - (Zg + BZjp)Jg. Iteration will be carried out on the values
Z-x-‘, Z%,, Ab> &- In tﬁe first iteration, Egs. (19) to (22) are iterated with
Zx, = Z7 + B2y, Zwg =2g + B2, and thus Ap = Ar = 0. When this iteration has
converged, a new pressure py is given, and new densities pyg, psxr can be found from
Eqs. (9), (16) or the isentropic equation of state. New temperatures Txg = px/px g,
Tap = p*/p*r, are evaluated, Eqs. (67) and (68) are solved, and new values Zxg, Zr,
Ay, & are found. If Ar > 0 the right wave 1s either a shock or a rarefaction
wave, and if A, < O the right wave is either a CJ-detonation followea by a rare-
faction wave or a strong detonation.

Let u, be the velocity in Sy. Given Af, Ar, we can find the velocities
Ycgys YT, behind possible CJ-detonations on the right and left. If uy < Uy,
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the right wave is a CJ-detonation followed by rarefaction, and if u, > “ch the
right wave 1s a strong detonation. The CJ state is unaffected by s (Usince it

depends only on S,) and as far as the Riemann solution is concerned it is a fixed

state. If the right wave is a CJ-detonation, Mr 1s redefined as

M, = (poy; - P /(v - )

where p,; is fram Eq. (65) and then

M_ = (ogyPep) /2 u(Pa/Pey)s  Pafogy S 1 (72)

¢2 is defined in Eq. (13). If the right wave is a strong detonation, from Eq.
(59)

_ o 1/2
M= 07" ¢5(p A Prs By)
where

2
(2, - Pe) (1 Py +2y)

(89)° = (72)
M

—12 - “12 > Py ¥ (“12 = py - 2“12°rAr

Ko

Similar expressions occur on the left. A second iteration starts with My, My
from the previous iteration, and written out in full, appears as follows:

p:=(uz-u +p /M +p£/M )/(l/M +1/MV) v>0
oyt = max (e, )

u_: = (P,B -p, * Mz u, + M: ur)/(M; + MY

where
(pr, P w) = (ch > Pag » Yog ) if right wave = CJ-detonation,
r r r

= (pr: D ur) otherwise,
(Dy Py ut) = (chj, PCJJ’ chz) if left wave = CJ-detonation,

= (Dz, Pys uﬁ) otherwise,

1/ 2¢3(prAr, P, by ") 1if right vave = strong detonation,
2,7t
= (prpr)l/ oM /p,) otherwise
23
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' Mr = Di/2¢3( Pglys Pyo prl) if left wave = strong detonation,
= (pzp‘z)l/edi(P:ﬂ/Pz) otherwise.

The iteration is stopped when it has converged, as before. New values of Z*g,

Z%p» M,& are evalusted, and the iteration is repeated. This process is stopped
when Ag, Ar change by less than some predetermined €3 over two successive iterations.
Once Sy has been determined, the solution is sampled as described in Chapter 2. The
only difference in the sampling procedure is that, if the wave is CJ-detonation,

(prs Pr> uy) are replaced by (pCJr’ Pegys uCJr) in all equations which describe the

flow to the left of the detonation wave. Similarly (pz, Pps uz) are replaced by
(DCJ‘, pCJ'z, UCJz) if the left wave is CJ-detonation wave. More details can be

found in Ref. 7.

4.2.4 NUMERICAL RESULTS

In Ref. 7, Chorin has displayed numerical results in cases of a strong
detonation wave, a CJ-detonation wave and a deflagration wave. However, those
examples were meant to show the usefulness of the method while using only a small
number of mesh points. Besides, the assumption ¢, = 9 is quite a rough assumption
from the point of view of actual applications. Here a practical case has been
calculated in which the burned gas has different specific heat ratio from the un-
burned gas. It is assumed that a combustible gas mixture reacts in an infinitely
thin reaction zone and turns into reaction products instantaneously and its com-
position stays the same afterward, namely, the specific heat ratio and the
specific molecular weight change their values at the wave front from y; to 9 and
Mo to M1, respectively. A stoichiometric gas mixture of hydrogen and oxygen was
chosen as an example. The data on combustion products were taken from the results
obtained by Benoit (Refs. 35 and 36). Those conditions are:

unburned gas: 21{2 + O2 gas mixture
7, = 1.40, M_=12.0

reaction products:  H,0 (53.2%), OH (13.7%), H, (16.49)
0, (4.9%), H (8.1%), 0 (3.8%)
7 =1.22, My = 14,5

From these values, the released energy was calculated to be 22.95 K cal/mol. . 3
Under these assumptions and conditions, a CJ-detonation resulted, followed by a 3
rarefaction wave. The pressure profiles are shown in Fig. 20. Although it tekes ‘
same time for the CJ-detonation to be fully developed, the pressure profiles are

quite similar once CJ-detonation is established. At the wave front, the pressure

ratio p/po Jumps from 1 to a value of about 15 for a CJ-detonation. It then

decays to a fairly constant stationary state in which p/po is about 6, due to

the rarefaction wave. This stationary state seems to extend from the starting

position of the detonation wave to about half of the distance which the detonation
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wave has travelled in the channel.

The pressure profiles of the reflected detonation wave as a shock wave at
the end wall of the combustion tube is shown in Fig. 21. Since the reflected
shock wave is propagating in a non-uniform state, the profiles of the reflected
shock wave change accordingly. At the moment, when the detonation wave reflects
at the end wall, the pressure ratio p/po is as high as 25 (this may be compared
with the highest value of 8 for an intense planar shock wave). Later, when the
reflected shock wave is propageting in the fairly uniform region p/Po is about 12.
In the sense that the data for the reaction products are needed as inputs for the
computation, the program can still be improved. If a program which calculates the
chemical reactions and determines the reaction products will be combined with
Chorin's method, it will form a very important, useful and generalized method of*
calculating reacting-gas flows.

5. DISCUSSIONS AND CONCLUSIONS

It has been shown by using an extensive number of examples that the RCM
provides exceptionally high computational accuracy for flows involving planar and
spherical shock waves, rarefaction waves and contact surfaces, as well as their
interactions. In addition, the RCM can handle flows with detonations and chemical
reactions involving the above transition fronts.

Owing to the high accuracy of calculated values in p, p, u and the fact that
the constant states are perfectly realized, very complex wave-interaction problems
vhich involve small changes in physicel parameters p, U, P, can be calculated,
such as the reflection of a shock wave from the end wall of a shock tube and the
subsequent interactions, orithe head-on collision of & shock wave with a rarefaction
vave,

Although, in practice, the accuracy of the wave positions is good (1 ~ 3%
of the total length of the spatial zones in the examples investigated here), Glimm
has recently developed "the methjod of tracking discontinuities”, which improves
this spatial error by a factor of I to 10 and locates the transition fronts with
an accuracy of 0.05Ax to 0.5A%x (Ref. 37). This improvement must be greatly
appreciated when one tries to epply the RCM to multidimensional wave-interaction
problems where the number of mesh points used and the computation time are
competitive. '

Due to the randomness of the method, the rarefaction waves are not smooth.
However, Sod states in his paper (Ref. L) that the rarefaction wave obtained
by the RCM could be smoothed out by a type of averaging and that he was considering this
subject. Once this has been accomplished, it is expected that the RCM will increase
its usefulness and applicability to those wave-interaction problems in which
rarefaction waves are involved in a more complex manner.

There are a number of very important pseudo-stationary problems, such as
oblique-sheck-wave reflections (Ref. 1), which require new approaches to their
numerical solutions. It is possible that the RCM may be ideally suited to the
solution of regular, single-Mach, complex-Mach and double-Mach-reflection problems
of oblique shock waves. A start in their direction has already been made for stationary
regular and Mach oblique-shock-wave reflection by Chorin (Ref. 3). We are hopeful
that complex-Mach and double-Mach reflections will be solved in the same manner
and perhaps extended to eimilar reflections of spherical shock waves.
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APFENDIX A: CONTACT SURFACE MOTION

When wave interactions are considered in a flow field which involves different
gases with different specific heat ratios, it is necessary to know the positions
of the contact surfaces, across which the specific heat ratios change their values.
The method used here for determining the paths of contact surfaces is as follows.

In principle, as previously mentioned, solutions p, u, p are determined at
points (iAx, nAt) and {(i +1/2)A, (n + 1/2)At}. In a real program, however,
the calculation is carried out in a two-step method and there are no intermediate
spatial mesh points like (i + 1/2)Ax. At the end of the first half-step, those
solutions which are supposed to be placed at points {(i + 1/2)&x, (n + 1/2)At)
will be stored in mesh points {(1 + 1)ax, (n + 1/2)at}; namely, storing positions
are shifted at half-mesh intervals, 1/2 Ax, to the right. On the other hand, at
the end of the second half-step, solutions are stored after being shifted 1/2 Ax
to the left. Figure A-1 illustrates this procedure. We can see that at the end
of every other half time-step, the mesh points correspond to the same physical
positions. Considering this procedure, we can determine the position of contact
surfaces and assign the different values of the specific heat ratio . Suppose a
contact surface was located between the i-th mesh and the (i-1)-th mesh at the
beginning of the first half-gtep, i.e.,

7(1) =7
at t = nAt

7(1 - 1) =y,

and one of the regions to the left of the contact surface was chosen by sampling.
Then, as described before, the solution which is associated with this region will
be given to the i-th mesh point. This means that the contact surface has moved
one mesh to the right, namely, from the mesh (i-1) to the mesh i. When sampling
point P lies to the right of the contact surface, the solution associated with one
of the regions having the specific heat ratio y; will be assigned to the mesh i.
This situation corresponds to a situation where the contact surface d4id not move
at all because the distribution of y is the same as before. In the second half-
step, the movement of a contact surface is determined in the same mammer as in
the first half-step, except that, in this case, the movement of a contact surface
is either one mesh to the left or stays in the same position. Figure A-2 and
Table A-1 illustrate the propagation of a contact surface.




APPENDIX B: PROGRAM LISTINGS

In the program, all dependent thermodynamic and dynamic values are made
1 nondimensional as follows

7, U
&

The independent variables of time and distance are also made nondimensional so that

\f‘
',—I
I

where L is the total length of a shock tube or the radius of an initial eylindrical
or spherical charge. The program consists of one main program and five subroutines.
Their functions will be described briefly.

Initial conditions; type of flow such as plane, cylindrical or spherical;
how and how often the output should be printed; mesh number; when to stop the
calculation; the boundary conditions are put into the main program. The main
program determines the time increment DT(At) , and spatial increment DX(/x),
in such & way that the Courant condition is satisfied, though the method itself
is stable, even if the Courant condition is violated. A random number XI(eA),
is determined at each haelf-time step with the aid of the SUBROUTINE RANDU which is
designed by IBM to generate random number, YFL over (0, 1). Then, at each mesh
point, the Riemann problem is solwved calling the SUBROUTINE GLIMM. It solves the
Riemann problem receiving the two initial state Sy and Sr from the main program and
does the sampling according to the random number X1. In the course of solving the
Riemann problem, FUNCTION FAT which corresponds to the function ¢ in Egs. (11),
(13) and (17) in Chapter 2 is used. By putting the sampled solutions into each
mesh, the first half-step is finished. Repeating the same procedure for the
second half-step, one time s.ep is finished and the solutions for a planar waves
are obtained. Boundary conditions are taken into consideration when Sg and Sy
are chosen in the main program. The results are printed calling the SUBROUTINE STTOUT.
If either a cylindrical or spherical flow is needed to be solved, Eq. (36) in
Sec. 4,1.2 is solved after the p.anar case has been solved. This is done calling
SUBROUTINE INHOM,
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LISTING OF THE COMPUTER PROGRAM

RANDOM CHOICE METHOD VARIATION 2.

PROGRAM FUR EXPLOSION OF A PRESSURIZED HELIUM SPHERE
COMMON/Z /DT sRLUL sPLIRIUIPIEIRRIURIPRX] oY s GAMMAL » GAMMAR
COMMON/OUT/TIMEsNsDXsRHO(301 ) oPRE(301)9oUX(301)9ENG(301)9GAMMA(30])
COMMON/RAD/ETA
INTEGER TSTP
NSTOP=320
NPRINT=5
N=180
NP1l=N+1
NHALF =34
NHALPl=NHALF+}

DX=le/FLOAT(N)
DT=0,01
TIME=0,
VMAX=0.
NCNTCT=NHALP]
NINCRS=0
GAMMRI=]14400
GAMML I=1.667
K1=11
K2=7
Nu=2
SIGMA=45
ETA=3,
SFT INITIAL CONDITIONS
DO 83 [=14NP1
IF(]eGE«NCNTCT) GO TO 11
GAMMA (1 ) =GAMML]
GO TO 83
11 GAMMA(])=GAMMRI
83 CONTINUE
PL=18425
RL=26523
UL=0,
PR=1e.
RR=1s
UR=0C, '
DO 15 I=1sNHALF 4«fi{
RHO(I)=RL N
PRE(I)=PL o)
UX (1) =UL @ ®
15 CONTINUE
DO 16 I=NHALP1,NP1 .
RHO (1) =RR 0l
PRE(])=PR
UX(I)=UR
16 CONTINUE
BEGIN TIME STEP
IX=212345¢789
DO 100 TSTP=1sNSTOP
DO 8 I=24N
VMAX1=ABS(UX(I))+SQRT(GAMMA( I )*#PRE(]I)}/RHO(]1))

—_—1—
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NV VI

F¥ro

50
51
52
53
54

55
56
57

58
59
60
61
62
63
64
65

67
68
69

70
71
T2

73
74
75
76
17
78
79
80
81
82
813
84
85
86
87
88
89
90

91
92
93

94
95
926
97
98
99
100
101

43

44

25

40

IF(VMAX]1 +GTe VMAX) VMAXsVMAX]
CONTINUE

DTT=SIGMA#DX/VMAX

IF(DTT oLTe DT) DT=DTT
TIMESTIME+2#DT

COMPUTE FIRST HALF STEP
GENERATE' RANDOM S1 USING CHORIN'S METHOD
NU=MOD (NU+K29K1)

CALL RANDUI{IXsIYsYFL)
SI=(YFL+FLOAT{NU))/FLOAT(K1)

X1 LIES BETWEEN =DX/2 AND DX/2
X1I=SI*#DX=0De5%DX

DO 40 [=2¢NP1

RR=RHO(])

UR=UXI(T)

PR=PRE(I)

GAMMAL=GAMMA (1=1)
GAMMAR=GAMMA (1)

IF(I +EQe 2¢) GO TO 43

RL=RIM]1

PL=PIM]

ul=UIMl

GO TO 44

BOUNDARY CONDITION AT AXIS R=0,
RL=RR

UL ==yUR

PL=PR _

COMPUTE FIRST HALF STEP OF GLIMM
CALL GLIMM

IF(1«NE«NCNTCT) GO TO 35
NINCRS=1

IF(X]eGEaY) NINCRS=(Q
RIM1=RMOL(T)

RHO(I)=R

PIM1=PRE(])

PRE(1)=P

UIMl=UXI(T])

Uxi(l1)s=u

CONT INUE

NCNTCT=NCNTCT+NINCRS

DO 75 1=14NP1

IF(]eGE«NCNTCT) GO TO 4
GAMMA (1) =GAMMLI

GO TO 75

GAMMA (1) sGAMMRI

CONTINUE

COMPUTE SECOND HALF STEP
GENERATE RANDOM SI USING CHORIN'S METHOD
NUsMOD {NU+K2¢K1)

CALL RANDU(IXslIYsYFL)
SIs(YFL+FLOAT(NU) )} /FLOATI(K1)

X! LIES BETWEEN =DX/2 AND DXx/2
XI=S1#DX=0e5#DX

DO 60 I=]eN

RL=RHO( 1)

PL=PREI(])

ULsUX(1)

GAMMAL=GAMMA(])
GAMMAR=sGAMMA(I+1)

IF(I +€EQe N) GO TO 63 — 2 e




102
103
104
105

106
107
108

109
110
11
112
113
l1ia
114
116
117
118
119
120
121
122
123
124
125
126
127
128
129

63

64

56

60

10n

RR=RHO(I+1)
PR=PRE(1+]1)

UR=UX(T+])

GO TO 64

HOUNDARY COMRITION AT R=le
RR=RL

UR==UL

PR=PL

COMPUTE SECGND HALF STEP OF GL MM
CALL GLImM

NCNTM]I =NCNTCT=1

IF (] oNE«eNCNTMYY GO TU 5b
NINCRS==]

IFI{XlelTeY) NINCRS=20
RRO(})=R

PRE(T Y =P

Ux(l)=su

CONT INUE
NCNTCTesNCNTCT+NINCRS

DO 70 I=1sNP1
IF(IaGENCNTCT) GO TU 3
GAMMA ([ ) =GAMML |

GO TOQ 70

GAMMA (] ) =GAMMR]

CONT INUE

CALL INHOM
IF{MOD(TSTPINPRINT } ¢EQeQ) CALL STTOUT
CONT I NUE

STOP

END
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SUBROUTINE GLIMM

COMMON/ /DT sRLsUL sPLsRsUIPsEsRRsUR PR e X oY s GAMMAL s GAMMAR
REAL MRyML yMRP1sMLP1

EPS=] .0bL=6

IT=0

ITSTOP=20

CONSTRUCTION OF RIEMANN PROBLEM

ALFA 1S THE CONVERGENCE FACTOR

INITIAL ML AND MR

ALFA=1,

ALFAM=14=ALFA

ML=100,

MR=100,

COEFL=SURT (PL*RL )

COEFR=SQRT (PIR*RR )

PSTAR=«5%(PL+PR)

SOLVE RIEMANN PRURLEM USING GODUNOV'S ITERATIVE METHOD
IT=1T+1

IF PSTAR 1S LESS THAN. EPS THEN PSTAK IS SLT EWQUAL
TO 1eUE=€& TO PREVENT PSTAR FRUM BECOMING NEGATIVEe
IF(PSTARGLTSEPS) PSTAR=EPS

COMPUTE MR AND ML AT STEP Q+1
MLP1=COEFL#PHI(PSTAR/PL » GAMMAL )
MRP12COEFR*PHI( PSTAR/IPR s GAMMAR)

DIFML=ABS (MLP1=ML)

DIFMR=ABS (MRP1=MR)

ML=EMLP]

MR=MRP]

COMPUTE NEW PRESSURE PSTAR

PSTARP=PSTAR
PSTAR=(UL=UR+PR/MR+PL/ML) /{1l e/ML+1e/MR)
PSTAR=ALFA#PSTAR+ALFAM®*PSTARP

IF(IT oLEe ITSTOP) GO TOU 30
IF(ABS(PSTAR=PSTARP) «LTe EPS) GO TO 40
IF(DIFML*DIFMR +LTe EFS) GU TO 40
ALFA=ALFA/2,

ALFAM=1.=ALFA

IF(ALFAM «LTe EPS) GO TO 40

1T=0

IF(DIFML «GTe EPS) GO TO 10

IF(DIFMR «GTe EPS) GO TO 10

COMPUTE USTAR AT END OF GODUNOV ITERATION
USTAR= (PL=PR+MR#UR+ML#UL ) 7/ (ML+MR)

BEGIN GLIMM'S METHOD

IREGL=1

IF(PSTAR oLTe PL) IREGL=2

IREGR=]

IF(PSTAR «LTe PR) 1REGR=2

Xu(JSTAR#DT

Y= X

s




L AR LR
. PRDOIERA

170
171

172
173
174

175
176
177
178

179
180
181
182

1823
184
185

186
187
1R8
189

190

191
192
193
194

195
196
197
198
199

200
201
202
203

204

209
206
207

208
209
210
211

212
213
214

100

1

1

10

20

130

200

210

IF(X] «GEe X) GO TO 200

LEFT SIDE

IF(IREGL «EQe 2) GO TO 110

COMPUTE LEFT SHOCK SPEED

UsyL=ML/RL

X=U*DT

IF{X] eGEe X) GO TO 100

LEFT OF LEFT SHOCK

R=RL

U=l

P=PL

GO TC 500

RIGHT OF LEFT SHOCK

RsML/ (USTAR=L)

U=USTAR

PePSTAR

GO TO 500

COMPUTE SOUND SPEED IN LEFT STATE

CL=SORT (GAMMAL*PL /RL)

X= (UL=CL)#DT

IF(X] «GEe X} GO TO 120

LEFT OF LEFT FAN

R=RL

UsuL

P=PL

GO TO 500

COMPUTE COUNSTANT OF [ISENTROPIC LAW = A
AzPL/ (RL*#GAMMAL )

COMPUTE DENSITY IN STATE STAR =

COMPUTE SOUND SPEED IN STATE STAR *
RSTAR=(PSTAR/A) ®% (] o/ GANMMAL)

CSTAR=SQRT {GAMMAL®#PSTAR/RSTAK)

X= (USTAR=CSTAR) »LT

IFIX] oGEe X) GO TO 130

IN LEFT FAN
Us{(2¢/({GAMMAL+1¢ } ) ®(XI/DT+CL*0 a5 % (GAMMAL=14e ) *#UL )
RINT=CL+0¢5% (GAMMAL=1 e ) #(UL=U)
R=(RINT*RINT/(A*GAMMAL} ) #% (] ¢/ {GAMMAL=1,4))
PaAX (R##GAMMAL)

GO TO 500

RIGHT OF LEFT FAN
R=RSTAR

UsUSTAR

P=PSTAR

GO TO 500

RIGHT SIDE

IF(IREGR +EQe 2) GO TO 220
COMPUTE RIGHT SHOCK SPEED
UsUR+MR/RR

X=U%DT

IF(XI #GEs X) GO TO 210
LEFT OF RIGHT SHOCK
R==MR/ (USTAR=U)
UsUSTAR

P=pPSTAR

GO TO 5060

RIGHT OF RIGHT SHOCK
R=RR

UsUR

PaPR -— 5 e

15Y FAaclavsohe
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221
222
223
224

275
226
227

228
229
230
231
232

233
234
235
236
237
238

220

230

240

500

GO TO 500

COMPUTE CONSTANT UF INSENTROPIC LAW = A
A=PR/ (RR#%GAMMAR )

COMPUTL DENSITY IN STATE STAR #
RSTAR=(PSTAR/A) %#(1,/GAMMAR)

COMPUTE SOUND SPEED IN STATE STAR
CSTAR=SQRT (GAMMAR#PSTAR/RSTAR)
X=(USTAR+CSTAR) #DT

IF(X] «GEe X) GO TO 230

LEFT OF RIGHT FAN

R=RSTAR

U=USTAR

P=PSTAR

GO TO 500

COMPUTE SOUND SPEED IN RIGHT STATE
CR=SORT (GAMMAR®PR/RR )

X= (UR+CR)#DT

IF(X] «GEs X) GO TO 240

IN RIGHT FAM

U= (2¢/(GAMMAR+1 ¢ ) ) # (X1 /DT=CR+0¢5%( GAMMAR=1¢ ) *UR)
RINT=CR+0e5%(GAMMAR=1 o ) % (U=UR)

R (RINT*RINT/ (A%*GAMMAR) ) #% (1 o/ (GAMMAR=14 ) )
PaA#* (R#*GAMMAR)

GO TO 500

RIGHT OF RIGHT FAN

R=RR

U=UR

P=PR

CONTINUE

RETURN

END




239
240
241
242
243
244
245
246
247

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
2613
264
265
266
267
268
269
270
271
272
273
274
275

10000

10001

SURROUT INE RANDUI(IXslYsYFL)
lysIXx#65539

IF(IY)S59€96
IYslY+2147483647+1

YFL=lY

YFLsYFL®*,4656613E=9

IX=ly

FETURN

END

SURROUTINE STTOUT

COMMON/ /DT oRLIUL sPLsRsUIPIESRRIURIPR9X]I oY »GAMMAL » GAMMAR
COMMON/OUT/TIME s NoDX s RHOU(30L1) 9 PREI301) sUXI301)9ENGI301)9GAMMA(301)
WRITE(6910000) TIME

FORMAT(1IMH197H TIME = sF1le7)

WRITE(6910001)

FORMAT(1HO#3H X 94X s5HDENSE 24X 93HVEL 95X s4HPRES 93X 93HGAM/ )
DO 20 I=2461

KTl=]=]

RT1=RHO(])

UTl=UuXx(1])

PT1=PRE(])

Gl=GAMMA(T)

KT2=1+59

RT2=RHO( I+60)

UT2=uUX{1+60)

PT2=PRE(1+60)

G2=GAMMA ([ +60)

KT3=1+11l9

RT3=RHO(1+120)

UT3=UX(1+120)

PT3=PRE(]+120)

G3=sGAMMA (1+4120)

PRINTS5sKT1sRT1oUT1ePT1s GloKT29RT29UT2ePT2y G2eKT3sRT39UT39PT3ys G3
FORMAT(1H 93(]1494FBe3s4X))

CONT INUE

RETURN

END
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27¢ FUNCTION PHI(X9sGAMMA)
277 EPS=]40E=~6
278 IF(ABS(le=X) «GTe EPS) GO TO 100
279 PHI=SQRT { GAMMA)
280 RETURN
281 100 COEF1=0e5#(GAMMA+],)
282 COEF2=0¢5% (GAMMA=1,)
283 COEF3=COEF2/GAMMA
284 IF(X «GEs le¢) GO TO 200
i 285 PHI=COEF2#(le=X)/(SQRTIGAMMA ) # (1 e~ (X#*COEF3)))
3 286 RETURN
287 200 PHI=SQRT(COEF1*#X+COEF2)
288 RETURN
2R9 END
290 SUBROUTINE INHOM
291 COMMON/ /DT oRLAUL sPLYRIUSIPIEIRRIURIPR 9 X] 9 Y s GAMMAL 9 GAMMAR
292 COMMON/OQUT /TIME ¢ NoDXosRHO (301 ) sPRE(301)sUX(30L)9ENG(301)9GAMMA (3V1)
293 COMMON/RAD/ETA
294 REAL MOM
295 NP1l=N+1
296 DO 100 1=2sNP1
297 GasGAMMA(])
298 X=FLOAT({ J=1)#DX
299 R=RHO(])
300 P=PRE(])
301 U=uUXx(1)
302 E=P/(G=1e)+0eS5#R*U*U
303 DENSR=DT#(ETA=~1, ) #R*U/X
304 MOM=R#U#* (1 ¢ =DTH(ETA=14)*U/X)
305 EsE=DT#(ETA=1e) ¥U* (E+P) /X
306 RHO (1) =DEN
307 UX(1)=MOM/DEN
3os PRE(1)=(G=1e}®(E~=0¢5¢MOM®MOM/DEN)
309 100 CONTINUE
310 RETURN
3112 END
4
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TABLE 1. COMPARISON OF PRESENT CALCULATION WITH REF, 11

REF. 11 PRESENT RESULTS
Region
P P u P P u

1 1.000 1.000 0.000 1.000 1.000 0.000

2 2.555 4,161 1.172 2.555 k.160 1.172

3 7.100 b.161 1.172 7.098 4,160 1.172

L 27.000 27.000 0.000 27.000 27.000 0.000

5 5.587 13.221 0.000 5.586 13.217 0.000

6 6.701 17.063 0.286 6.698 17.055 0.286

T 17.997 17.063 0.286 17.987 17.055 0.286

8 7.985 21.823 0.000 T.981 21.812 0.000

9 8.324 23.133 0.069 8.320 23.120 0.069

10 22.349 23.133 0.069 22.335 23.120 0.069

11 8.675 24,509 0.000 8.670 2k 4ok 0.000

12 .8.761 2k ,852 0.017 8.757 24,837 0.017 .

13 23.523 2,852 0.017 23,507 24,37 0.017 T
1k 8.849 25.200 0.000 8.8h4L 25.18k4 0.000 ;




TABLE 2. VALUES OF p, p AND u FOR REGIONS IN FIG. 5

i Region P P u Region p P u
4 2 2.555 4.160 -1.172 36 8.886 25.353 0.000
3 7.098 L.160 - 1.172 37 8.818 25.083 + 0.013
5 5.586 13.217 0.000 38 8.824 25.103 + 0.012
6 6.698 17.055 - 0.286 39 23.686 25.103 + 0.012
7 17.987 17.055 - 0.286 Lo 23.670 25.079 + 0.013
1 8 7.981 21.812 0.000 41 23.665 25.073 + 0.013
9 8.320 23.120 - 0.069 it} 23.663 25.072 + 0.013
10 22.335 23.120 - 0.069 43 23.662 25.071 + 0.013
n 22.10h4 22.790 - 0.058 Ly 22.41Y4 25.071 + 0.013
12 20.939 22.790 - 0.058 ys 22.355 2k .979 + 0.015
13 8.670 24 .ok 0.000 L6 8.819 25,084 + 0.013
14 8.757 24.837 - 0.017 L7 23.673 25.084 + 0.013
15 23.507 24 .837 - 0.017 L8 23.669 25.079 + 0.013
X 16 23.269 24 . 487 - 0.007 4g 23.668 25.078 + 0.013
3 17 23.251 ok 463 - 0.006 50 23.666 25.076 + 0.013
18 22.025 24 . 463 - 0.006 51 8.751 2k 814 0.000
19 21.965 2L .373 - 0.003 52 8.756 24.835 - 0.001
20 21.631 2k .373 - 0.003 53 8.752 24.816 - 0.000
21 8.8u44 25.184 0.000 54 8.735 2h,752 + 0.003
22 8.865 25.269 - 0.00k4 55 23.4kg 2. 752  + 0.003
23 23.798 25,269 . - 0.004 56 23.445 a4, 746  + 0.003 1
2y 23.558 24,913 + 0.006 57 23.4k42 2. 745  + 0.003
25 23.541 24,889 + 0.007 58 8.761 2L .855 0.000 1
26 23.535 24,883 + 0.007 59 8.757 24 .837 + 0.001
27 22.294 24,883 + 0.007 60 8.741 eh.772  + 0.004
28 22.235 24,792 + 0.010 61 8.7he 2k, 777 + 0.003
29 8.798 24,999 + 0.008 62 23.466 24,777  + 0.003
30 23.616 24 .999 + 0.008 63 23.462 24,771+ 0.004
31 23.599 2k .975 + 0.009 64 8.732 24.818 0.000
32 23.594 24,969 + 0.009 65 8.736 24.754  + 0.003
33 23.592 24,968 + 0.010 66 8.737 24.759 + 0.003
34 22.348 24,968 + 0.010 67 8.719 24.690 0.000
35 22.289 o4 876 + 0.013 68 8.721 2h.694 - 0.000




COMPARISON OF PRESENT CALCULATIONS WITH REF. 12

TABLE 3.

REF. 12 PRESENT RESULTS
Region 5 P u P ) u
0 1.00000 1.00000 0.00000 1.0000 1.0000 0.0000
1 1.60300 1.96000 0.50789 1.603 1.960 0.5079
2 0.64340 0.53935 0.42207 0.6435 0.5393 0.k217
3 1.07360 1.12217 0.93126 1.07h 1.122 0.9314
L 1.07630 1.12217 0.93126 1.076 1.122 0.9314
5 2.42830 1.96000 0.50789 2.428 1.960 0.5079
6 0.45660 0.53935 0.42207 0.4565 0.5393 0.4217
7 L 41850 4.1485 0.00000 4.1485 4.1485 0.0000
8 0.30659 0.30659 0.00000 0.30659 0.30659 0.0000




TABLE 4.

HEAD-ON COLLISION OF TWO RAREFACTION WAVES

METHOD OF CHARACTERISTICS PRESENT NUMERICAL RESULTS
Region

b P Y u p D u

f

d 1 0.49119 0.024793  0.0000 0.49119  0.024793  0.000
ﬁ 2 1.5984 0.3995 0.6145 1.598 0.399 0.61L
? 3 0.5192 0.3995 0.6145 0.519 0.399 0.614
; L 1.0000 1.0000 0.0000 1.000 1.000 0.0

5 5 0.6901 0.5950 - 0.3576 0.690 0.595 - 0.358
! 6 4 .5hTY 0.5950 - 0.3576 L.5u7 0.595 - 0.358
| 7 1.7457 0.088118 0.0000 1.7457 0.088118 0.000
E 8 €.3393 0.2202 0.2569 0.339 0.220 0.257
i
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TABLE 5. CONTACT-SURFACE TAILORING

EXACT SOLUTIONS PRESENT NUMERICAL RESULTS
Region
1 (] P u p P u
1 1.000 1,000 0.000 1.000 1.000 0.000
2 3.100 12,310 2.140 3.079 12.310 2.141
3 3..484 12.310 2.1%0 3.L48k 12.310 2.1h1
L 10.568 58.207 0.000 10.568 58.207 0.000
5 6.907 54,982 0.000 6.860 54.976 0.000
7 6.907 54.982 0.000 6.860 5L.976 0.000
8 9.253 54.982 0.000 9.251 54.976 0.000 {




0 ot e B YA A aF 7 el -

TABLE 6. SHOCK-WAVE REFRACTION AT A STATIONARY CONTACT LAYER

EXACT SOLUTIONS PRESENT NUMERICAL RESULTS
Region

p P u P P u
1 0.13823 1.0000 0.0000 0.138 1.000 0.0 ]
2 0.2183 2.1965 1.5058 0.218 2.196 1.505
3 1.6481 2.1965 1.5058 1.648 2.196 1.505 ;
L 2.3920 3.7000 1.0594 2.392 3.700 1.059
5 1.0000 1.0000 0.0000 1.000 1.000 0.0
6 1.0000 1.0000 0.0000 1.000 1.000 0.0
7 2.0988 2.9717 0.8587 2.099 2.971 0.859
8 0.2560 2.9717 0.8587 0.261 2.971 0.859

i i di i o A4 v




TABLE A-1 RELATION BETWEEN SAMPLED REGION IN FIG. A-2 AND CONTACT-SURFACE
MOVEMENT

SAMPLED REGION MOVEMENT QF CONTACT SURFACE
A +1
First-half step
B ¢]
C o]
Second~-hailf step
D -1




(n+1)at

(n+z)at

n At

(i-1)ax  (i-§)ax  iax (i+k)ax  (i+)ax

FIG. 1 GRID CONSTRUCTION FOR RANDOM-CHOICE METLOD AND SEQUENCE OF
SAMPLING PROCEDURE,

® - GRID POINTS WHERE SOLUTIONS ARE SOUGHT; Wy, Wy - LEFT
OR RIGHT RUNNING WAVES; C - CONTACT SURFACE; P - SAMPLING
POINT.

S, /C (45 = ux)

(p)(’u*) /
Io*l / Io*r

FIG. 2 SOLUTION OF A RIEMANN PROBLEM IN (x-t)-PLANE.
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Regions i

—4+—(n+3)at

l n At

(i=1)aAx iAX

FIG. 3 FIVE DIFFERENT SOLUTIONS OF A RIEMANN PROBLEM CORRESPONDING
TO THE SAMPLED REGION OR STATE.

Wy =R - RAREFACTION WAVE; H -~ HEAD, T - TAIL; C - CONTACT
SURFACE; Wy = S - SHOCK WAVE.

s b
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FIG. L WAVE DIAGRAM IN (x, t)-PLANE (REF, 11).
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FIG. 8 NUMERICAL CONTACT-SURFACE TAILORING,
INITIAL CONDTTIONS: py/py = 58.207

yy = 1.400, a; = 322.000 m/s

7y = 1.667, ay = 692.548 m/s

WAVE SPEEDS: Mg =8;/8 = 3.1698, M, =Cy/a; = 2.1404
M3 = (uz-a3)/ay = 0.41775, M, =Sp/a; = -1.74315
M. = Sp/ay = -1.74315, Myg ® S3/a; = -1.26913
o] o .
(ms)
3
as} 1
0 40 “
X(cm) 80
FIG. 9 SHOCK-WAVE REFRACTION AT A STATIONARY CONTACT LAYER.
INCIDENT SHOCK STRENGTH pp/P; = 3.70. FROM REF. 15.

PRESENT NUMERICAL VALUES: O O O SHOCK WAVES; ® @ @ RAREFACTZON
WAVES; + + + CONTACT SURFACES.
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FIG. 10 FPROFILES AT FIXED TIMES FOR A SHOCK WAVE MOVING IN A VARIABLE DENSITY
STATE (a) PRESSURE, (b) DENSITY.

TIME NUMBERS:

1-0.132 ms, 3 - 0.362 ms, 5 - 0.591 ms, 7 - 0.820 ms,
9 -1.05ms, 11 - 1.28 ms, 13 - 1.51 ms, 15 - 1.74 ms,
17 - 1.96 ms, 19 - 2.19 msg, 21 - 2.42 ms, 23 - 2.65 ms,
25 - 2.87 ms, 27 - 3.10 ms, 29 - 3.33 ms, 31 - 3.55 ms,
33 - 3.78 ms.
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(4) He Air
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o
(1)
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g Pl Ps /P, = 18.25
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FIG. 12-a EXPLOSION OF A HELIUM SPHERE. PRESSURE PROFILES vs RADIUS FOR FIXED
TIMES. 71 = 1.400, 7 = 1.667, DIAPHRAGM PRESSURE RATIO 18.25; SHOCK
MACH NUMBER Mg = 2.39, PRESSURE RATIO Ppy = 6.50, DENSITY RATIO
oy = 3.20, PARTICLE VELOCITY Uy = 1.64; THE FOREGOING ARE THE
INITIAL CONDITIONS FOR THE PLANAR (SHOCK TUBE) CASE. © BIRTH POINT
OF SECOND SHOCK. TIME NUMBERS: 6 - 16 ps, 12 = 31.7 us, 18 - 47.2 ps.
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FIG. 12-b EXPLOSION OF A HELIUM SPHERE, PRESSURE PROFILES vs RADIUS FOR FIXED
TIMES AFTER SECOND SHOCK WAVE IS REFLECTED. TIME NUMBERS: 48 - 125, us,
54 - 140, ps, 60 - 156. us.
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EXPLOSION OF A HELIUM SPHERE. DENSITY PROFILES vs RADIUS FOR FIXED
TIMES. © BIRTH POINT OF SECOND SHOCK. TIME NUMBERS: 6 - 16.1 us,
12 - 31.7 us, 18 - 47.2 ps, 24 - 62.8 us, 30 - 78.3 us, 36 - 93.9 us,
42 -~ 109. us, 48 - 125. us, 54 - 140O. ps.
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FIG. 14 EXPLOSION OF A HELIUM SPHERE, PARTICLE VELOCITY PROFILES vs RADIUS FOR
FIXED TIMES. TIME NUMBERS: 6 - 16.1 pus, 16 - L42.0 us, 26 - 68.0 ps,
36 - 93.6 us, 46 - 120. us, 56 - 146, us.

DA AT Wil .1 T S et s - T —




4 1
50 100
r (cm)

FIG. 15 EXPLOSION WAVE DIAGRAM IN THE (r, t)-PLANE. © BIRTH POINT OF SECOND SHOCK.




FIG. 16-a ISOBARS IN THE (r, t)-PLANE.
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FIG. 16-b DETAILED AREA OF ISOBARS NEAR THE ORIGIN.
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FIG. 17-a ISOPYCNICS IN THE (r, t)-PLANE, © BIRTH POINT OF SECOND SHOCK.
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FIG. 17-b DETAILED AREA OF ISOPYCNICS NEAR THE ORIGIN. o BIRTH POINT OF SECOND SHOCK.
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FIG. 20 PROPAGATION OF A DETONATION WAVE (D) IN A MIXTURE OF 2Hp + O2. TIME
NUMBERS: 1 - hlal },I.B, 2 - 8107 HS, 3 - 122- l.l.s, L" - 1620 HS, 5 - 202 us,
6 - 21"2 us’ 7 - 2820 |J.S, 8 - 322. p.s’ 9 - 362- l.l.s.
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FIG. 21 REFLECTION OF A DETONATION WAVE IN 2Hp + O2 AT THE END WALL OF A TUBE.
11 - 445, us, 12 - 498, ps, 13 - 548, us, 14 - 592, us,
15 - 637. us, 16 - 681, ps, 17 - 725. ps, 18 - 770. us, 19 - 816. ps,
20 - 863. us, 21 - 911, us, 22 - 958, us.

TIME NUMBERS:
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FIG. A-l-a COMPUTATIONAL DOMAIN. ® : ACTUAL GRID POINT; O : IMAGINARY GRID POINT.
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FIG. A-1l-b RELATIONSHIP BETWEEN COMPUTATIONAL MESH POINTS AND ACTUAL PHYSICAL LOCATIONS.

(1) WHEN CALCULATION STARTS, (ii) AFTER FIRST-HALF-STEP, (iii) AFTER SECOND-HALF-
STEP. ©, Q, ... : CORRESPOND MESH POINTS.




(n+1) at
! (n+3)at
(n+g )at
. nat
(i=-1)ax 1AX
FIG. A-2 FOUR REGIONS WHICH DETERMINE MOVEMENT IN CONTACT SURFACE.
(1) IN PIRST-HALF STEP, (ii) IN SECOND-HALF STEP.
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